ENTHALPY PROBLEMS AND MASS-HEAT PROBLEMS

1. Given the following reac	tion: $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$			
	_ a. What is the ΔH_f of C_2H_6 ?			
	b. Is the ΔH_f of C_2H_6 always the same for any reaction involving C_2H_6 ?			
	_ c. What is the ΔH_f of the water vapor in the reaction?			
	d. Do the ΔH_f values indicate that C_2H_6 or water vapor is more stable at 25 °C?			
-	e. What is the ΔH_{rxn} for the reaction?			
	f. Does the ΔH_{rxn} indicate that there is more enthalpy in the products or in the reactants?			
	g. Is the reaction endothermic or exothermic?			
-	h. Based on the enthalpy change alone, would you expect the reaction to be spontaneous at room temperature?			
2. Given the reaction $2\text{Fe}(s) + 3\text{CO}_2(g) \rightarrow \text{Fe}_2\text{O}_3(s) + 3\text{CO}_2(g)$				
	a. What is the $\Delta H_{\rm f}$ for pure iron in the above reaction?			
	b. What is the ΔH_{rxn} ?			
	c. Which is the more stable reactant in the reaction? Why?			
	d. Which is more stable, the C_2H_6 in the first reaction or the Fe_2O_3 in the second reaction? Why?			
	e. Based on the enthalpy change alone, would you expect the above reaction to be spontaneous at room temperature?			
	f. Do the products or the reactants in the above reaction have more enthalpy?			
	g. Is the above reaction endothermic or exothermic?			

	rite the thermochemical equation for the following reactions. Be sure to solve for ΔH and ow it in its proper place in the balanced chemical equation!
1.	nitrogen dioxide decomposes (when heated) into nitrogen monoxide and oxygen gas.
2.	Methyl alcohol (CH ₃ OH) is completely combusted. Water vapor is one of the products. (ΔH_f = -201 kJ/mol for methyl alcohol.)
3.	Iron plus carbon dioxide yields iron(III) oxide plus carbon monoxide.
4.	Liquid water is synthesized from its elements.
5.	Carbon monoxide reacts with oxygen gas yielding carbon dioxide.
a.	How much heat would be released per mole of carbon monoxide that reacts?
b.	If 35 g of carbon monoxide is combined with excess oxygen, how many kJ of heat would be released?

C.	If you wished to generate EXACTLY 100.0 kJ of heat, how many grams of carbon monoxide would you need to react?
d.	How many grams of oxygen would be needed to generate the same amount of heat in part c?
e.	If 80.00 kJ of heat are produced, how many grams of carbon dioxide are produced at the same time?

Key

ENTHALPY PROBLEMS AND MASS-HEAT PROBLEMS

1. Given the following reacti	on: $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$							
-84,68 /mol	a. What is the ΔH_f of C_2H_6 ?							
yes	b. Is the ΔH_f of C_2H_6 always the same for any reaction involving $C_2H_6?$							
-241.810 mol	c. What is the ΔH_f of the water vapor in the reaction?							
Och select	d. Do the $\Delta H_{\rm f}$ values indicate that C_2H_6 or water vapor is more stable at 25 °C?							
-2855,58 MBT	e. What is the ΔH_{rxn} for the reaction?							
reactants	f. Does the ΔH_{rxn} indicate that there is more enthalpy in the products or in the reactants?							
exothermic	g. Is the reaction endothermic or exothermic?							
425	h. Based on the enthalpy change alone, would you expect the reaction to be spontaneous at room temperature?							
2. Given the reaction 2Fe(s)	2. Given the reaction $2\text{Fe}(s) + 3\text{CO}_2(g) \rightarrow \text{Fe}_2\text{O}_3(s) + 3\text{CO}$							
	a. What is the ΔH_f for pure iron in the above reaction?							
+ 26.752	b. What is the ΔH_{rxn} ?							
1. DWest	c. Which is the more stable reactant in the reaction? Why?							
1 1 1 1 1 1 1	d. Which is more stable, the C ₂ H ₆ in the first reaction or the Fe ₂ O ₃ in the second reaction? Why?							
	e. Based on the enthalpy change alone, would you expect the above reaction to be spontaneous at room temperature?							
products	f. Do the products or the reactants in the above reaction have more enthalpy?							
endothermic	g. Is the above reaction endothermic or exothermic?							

Write the thermochemical equation for the following reactions.	Be sure to solve for ΔH and
show it in its proper place in the balanced chemical equation!	

•
1. nitrogen dioxide decomposes (when heated) into nitrogen monoxide and oxygen gas.
DHrm = [2(90.25 KJ/me) + 0] - 2(33.18 KJ/mel) = 114.14 KJ/mel
Tayor 11.1
2. Methyl alcohol (CH ₃ OH) is completely combusted. Water vapor is one of the products. $\Delta H_F = -20181$ Mas $\Delta CH_3OH_0+3O_0(s) \rightarrow 2CO_2(s)+4H_3O_1(s+1363KT)$ $\Delta H_{TXI} = [2(-393.509 Plant) + 4(-241.818 KT/MeV)] - [2(-201 KT/MeV) + 3(0)]$
= -1353 KT/mal
3. Iron plus carbon dioxide yields iron(III) oxide plus carbon monoxide.
6.752 HZFe(s) +3(0z(g) > Fe ₃ (0 ₃ (g) + 3(0(g))
4. Liquid water is synthesized from its elements. $2H_{26}+O_{3}(g) = 2H_{3}O(l) + 571.66 \text{ KJ}$ $DH_{7}m = 2(-285.830 \text{ KJ/mol}) - [2(0) + 0]$
5. Carbon monoxide reacts with oxygen gas yielding carbon dioxide. $2CO(5) + O_{3}(5) = 2(0.5) + 5(5.968) \times 10^{-10} = 2(0.5) \times 10^{-10} = 2(0.5$
a. How much heat would be released per mole of carbon monoxide that reacts?
-865.965KJ = -382.984KJ/mol
b. If 35 g of carbon monoxide is combined with excess oxygen, how many kJ of heat would be released?
1. If 33 g of carbon monoxide is combined with excess oxygen, now many kJ of heat would be released? 359 wello -565,968KJ 353.6KS 28.01g 28.01g 2msl 60
(0)

c. If you wished to would you need	generate EXACTLY 1 to react? 2 mol CO 565.968KJ	00.0 kJ of heat, ho 1 28.019 TIMDICO	w many grams of c	arbon monoxide
	1.			

d. How many grams of oxygen would be needed to generate the same amount of heat in part c?

-100.0 KJ [mol 02 | 31.9989 = 5.6549

e. If 80.00 kJ of heat are produced, how many grams of carbon dioxide are produced at the same time?

-50.00 KJ 2MD/CO2 144,0099 = 12.449 CO2